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Abstract There are several Teichmüller spaces associated to a surface of infinite topolog-
ical type, after the choice of a particular basepoint (a complex or a hyperbolic structure on
the surface). Such spaces include the quasiconformal Teichmüller space, the length spectrum
Teichmüller space, the Fenchel-Nielsen Teichmüller space, and there are others. In general,
these spaces are set-theoretically different. An important question is therefore to understand
relations between them. Each of these spaces is equipped with its own metric, and under
some hypotheses, there are inclusions between them. In this paper, we obtain local met-
ric comparison results on these inclusions, namely, we show that the inclusions are locally
bi-Lipschitz under certain hypotheses. To obtain these results, we use some hyperbolic geom-
etry estimates that give new results also for surfaces of finite type. We recall that in the case of
a surface of finite type, all these Teichmüller spaces coincide setwise. In the case of a surface
of finite type with no boundary components (but possibly with punctures), we show that the
restriction of the identity map to any thick part of Teichmüller space is globally bi-Lipschitz
with respect to the length spectrum metric on the domain and the classical Teichmüller metric
on the range. In the case of a surface of finite type with punctures and boundary components,
there is a metric on the Teichmüller space which we call the arc metric, whose definition is
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analogous to the length spectrum metric, but which uses lengths of geodesic arcs instead of
lengths of closed geodesics. We show that the restriction of the identity map to any “relative
thick” part of Teichmüller space is globally bi-Lipschitz, with respect to any of the three
metrics: the length spectrum metric, the Teichmüller metric and the arc metric on the domain
and on the range.

Keywords Teichmüller space · Teichmüller metric · Quasiconformal metric · Length
spectrum metric · Fenchel-Nielsen coordinates · Fenchel-Nielsen metric

Mathematics Subject Classification (2000) 32G15 · 30F30 · 30F60

1 Introduction

This paper concerns surfaces of finite and of infinite topological type. The results are different
in each case, and we treat them separately. We start with the case of surfaces of infinite type.

Let � be a surface of infinite topological type, that is, a surface obtained by gluing a
countably infinite number of generalized pairs of pants along their boundary components.
Here, a generalized pair of pants is a sphere with three holes, a hole being either a point
removed (giving rise to a puncture) or an open disk removed (giving rise to a boundary com-
ponent). The hyperbolic structures we consider on � are such that the boundary components
are closed geodesics and the punctures are cusps, that is, punctures admit neighborhoods
that are quotients of regions of the form {(x, y)|y > a} of the upper-half plane model of the
hyperbolic plane by an isometry of the form z �→ z + 1.

There are several Teichmüller spaces associated with such a surface �, with several inclu-
sions between them, and different metrics on them. We are interested in comparing these
metrics, in cases where a comparison can be done. This paper is a continuation of the work
done in [2] and [3], in which we introduced a space we called the Fenchel-Nielsen Teichmüller
space, which is equipped with a metric we called the Fenchel-Nielsen metric. In these papers,
we compared this metric with the Teichmüller metric. The definition of the Fenchel-Nielsen
Teichmüller space of � depends on the choice of a base hyperbolic surface (considered as a
basepoint for Teichmüller space) and of a pair of pants decomposition of that surface. Our
work is also in the spirit of [12], in which we studied the various metrics on Teichmüller
spaces of surfaces of infinite topological type. In the present paper, we mainly consider the
question of local metric comparison between the Fenchel-Nielsen metric, the quasiconformal
metric and the length spectrum metric.

Teichmüller spaces can be seen as parameter spaces for conformal structures on �. We
will always consider these conformal structures as endowed with their intrinsic metric. This
is a hyperbolic metric in the given conformal class, and it was defined by Bers. In the case of
a Riemann surface with empty ideal boundary but which may have punctures (that is, ends
with neighborhoods conformal to punctured discs), the intrinsic metric coincides with the
Poincaré metric. But in the case of a Riemann surface with nonempty ideal boundary the
two metrics do not coincide, see the end of Sect. 4 of [2] for the definition and a discussion.
Endowing a Riemann surface with its intrinsic metric will allow us to use techniques from
hyperbolic geometry, like the existence of geodesic pair of pants decompositions and of Fen-
chel-Nielsen coordinates. A geodesic pair of pants decomposition of a hyperbolic surface is
a decomposition into pairs of pants, that is, spheres with three holes, by curves that are closed
geodesics on the surface, and where each pair of pants in the decomposition can have 1, 2 or
3 geodesic boundary components, the other holes being cusps.
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We note that in order to use Fenchel-Nielsen coordinates on a surface �, we need to show
that given a topological pair of pants decomposition P = {Ci }i=1,2,... of � and a hyperbolic
metric on �, there exists a unique geodesic pair of pants decomposition in which all the
closed curves are homotopic to those in P. This is not true for general hyperbolic metrics.
One problem is that union of the geodesics obtained by replacing each curve Ci of P by its
geodesic representative might not be closed, and there are other problems. In [2] we discussed
this question and we gave a necessary and sufficient condition on hyperbolic structures on
surfaces of infinite type to have a geodesic pair of pants decomposition. We called this con-
dition Nielsen-convexity. One way of stating that result is to say that a hyperbolic metric
satisfies this property if and only if it is the intrinsic metric of some conformal structure.
This is the reason why in what follows we shall consider only hyperbolic metrics that are
intrinsic in the sense we defined. We note that we proved in [2] that a hyperbolic surface is
Nielsen-convex if and only if it is a convex core. An intrinsic metric is a convex core. This
was proved by Bers, who showed that every Riemann surface is the Nielsen kernel of some
Riemann surface (that he calls the Nielsen extension). To prove the existence of the Nielsen
extension, Bers used the intrinsic metric on the surface, he showed that it is a convex core, and
he then obtained the Nielsen extension by gluing to this convex core funnels and half-planes.
The only fact that is useful to us here is that the intrinsic metric is Nielsen convex.

A hyperbolic metric S on � has Fenchel-Nielsen coordinates ((lS(Ci ), θS(Ci )))i=1,2,...

with respect to P, using the notation of [2]. For the convenience of the reader, the definition
of these coordinates as well as the precise definitions of the three Teichmüller spaces that we
mentioned above are recalled in Sect. 2 below.

We consider a conformal structure S0 on � which we consider as the basepoint of Teich-
müller space. We denote by (Tqc(S0), dqc) the quasiconformal Teichmüller space equipped
with the corresponding metric, and by (Tls(S0), dls) the length-spectrum Teichmüller space
equipped with its metric. We also let P = {Ci }i=1,2,... be a fixed pair of pants decomposition
of � and we denote by (TF N (S0), dF N ) the resulting Fenchel-Nielsen Teichmüller space
equipped with its metric. The Fenchel-Nielsen Teichmüller space depends on the choice of
P, but we will not mark this dependence explicitly unless this is necessary. Hence the space
TF N (S0) and its metric are not intrinsic objects associated to S0 but they constitute a useful
tool to study the other spaces, because TF N (S0) has explicit coordinates and it is isometric
to the sequence space �∞. We shall recall the definitions in Sect. 2.

We note that in this paper we consider the reduced Teichmüller space theory. This means
that if the ideal boundary of S0 is non-empty (see e.g. [16] for the definition of the ideal
boundary), a Teichmüller space of � is a set of equivalence classes of marked Riemann
surfaces up to homotopy, with the homotopy being free on the boundary components.

Given a hyperbolic structure S and a simple closed curve C on �, we denote by lS(C)

the length of the unique S-geodesic in the homotopy class of C . In the case where S is a
conformal structure on �, then we denote by lS(C) the length of the unique geodesic in the
homotopy class of C with respect to the intrinsic metric associated to S.

We say that a conformal structure S is upper-bounded with respect to P if there exists a
constant M > 0 such that for any simple closed curve Ci in P, we have lS(Ci ) ≤ M .

We say that a conformal structure is upper-bounded if it is upper-bounded with respect
to some pair of pants decomposition, or if it is upper-bounded with respect to a pair of pants
decomposition P which is understood.

A marked conformal structure (respectively a marked hyperbolic structure) on � is a pair
( f, S) where S is a surface homeomorphic to � equipped with a conformal (respectively a
hyperbolic structure) and f : � → S a homeomorphism. A marked conformal (respectively
hyperbolic) structure on S induces a conformal (respectively hyperbolic) structure on the
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surface � itself by pull-back. Conversely, a conformal (respectively hyperbolic) structure
on S can be considered as a marked hyperbolic surface, by taking the marking to be the
identity homeomorphism of �. Using this formalism, an element of Teichmüller space is
then an equivalence class of marked conformal (respectively hyperbolic) structures ( f, S)

where the equivalence relation ∼ is defined by ( f, S) ∼ ( f ′, S′) if there exists a conformal
homeomorphism (respectively an isometry) h : S → S′ such that h ◦ f is homotopic to f ′.
We shall use the notation [ f, S] to denote the equivalence class of the marked surface ( f, S).

In [2, Theorem 8.10], we proved the following:

Theorem 1.1 Let S0 be a conformal structure on �, and suppose that S0 is upper-bounded.
Then we have a set-theoretic equality Tqc(S0) = TF N (S0). Furthermore, the identity map

j : (Tqc(S0), dqc) 	 [ f, S] �→ ((lS(Ci ), θS(Ci )))i=1,2,... ∈ (TF N (S0), dF N )

is a locally bi-Lipschitz homeomorphism.

Since the metric dF N on the Fenchel-Nielsen Teichmüller space TF N (S0) makes this space
isometric to the sequence space �∞, Theorem 1.1 gives a locally bi-Lipschitz homeomor-
phism between the quasiconformal Teichmüller space (Tqc(S0), dls) and �∞. An analogous
result was proved by Fletcher in [8], in the setting of non-reduced Teichmüller spaces.

One of our goals in this paper is to give a local comparison result between the Fenchel-
Nielsen metric and the length spectrum metric. The latter metric, in the setting of surfaces
of infinite type, was first studied by Shiga in [17]. A famous lemma due to Wolpert (see the
exposition in [1]) implies that for any hyperbolic surface S0, we have a natural inclusion

Tqc(S0) ↪→ Tls(S0) (1)

given by the identity map, and that this map is 1-Lipschitz, that is, for any two elements S
and S′ in Tqc(S0), we have dls(S, S′) ≤ dqc(S, S′). We note by the way that in general, this
inclusion map is not surjective (see [12] for an example).

Theorem 1.1, combined with Wolpert’s result, gives the following:

Theorem 1.2 Let S0 be a conformal structure on � which is upper-bounded. Then, for any
S in TF N (S0), there exists a neighborhood N of S in TF N (S0) and a constant C > 0 that
depends only on N such that for any S′ and S′′ in N, we have

dls(S′, S′′) ≤ CdF N (S′, S′′).

Besides the upper-boundedness property for conformal structures, we shall use the fol-
lowing stronger property, which we call Shiga’s property, because it was used in a similar
context in Shiga’s paper [17].

We say that a conformal structure S satisfies Shiga’s property with respect to P if there
exist two positive constants δ and M such that the following holds

∀Ci ∈ P, δ ≤ lS(Ci ) ≤ M. (2)

Like for the upper-boundedness condition, we shall say that a conformal structure satisfies
Shiga’s property if it satisfies such a property for some pair of pants decomposition, or if it
satisfies it for a pair of pants decomposition which is understood.

One of the main results in this paper is the following, the proof of which appears at the
end of Sect. 3 (Theorem 3.5).
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Theorem 1.3 Let S0 be a conformal structure on � satisfying Shiga’s condition (2) and
let T(S0)qc be the corresponding quasiconformal Teichmüller space. For any element S of
Tqc(S0) and for any positive constant D, there exists a positive real number C that depends
only on δ, M, D and dls(S0, S) such that if two elements S1 and S2 of Tqc(S0) are in the open
ball of centre S and radius D, then dF N (S1, S2) < Cdls(S1, S2).

From Theorems 1.1, 1.2 and 1.3, we deduce the following.

Theorem 1.4 Let S0 be a conformal structure on � satisfying Shiga’s condition. Then we
have a set-theoretic equality Tqc(S0) = Tls(S0) = TF N (S0), and the identity map between
any two of the three spaces with their respective metrics dqc, dls and dF N is locally bi-Lips-
chitz.

This implies in particular that under Shiga’s condition, Tls(S0) is locally bi-Lipschitz
equivalent to the sequence space �∞. It also implies that the Fenchel-Nielsen Teichmüller
space TF N (S0), as a set, does not depend on the choice of the pair of pants decomposition
of S0, and that the identity map between two Fenchel-Nielsen spaces with the same base-
point and corresponding to different pairs of pants decompositions is a locally bi-Lipschitz
homeomorphism. (In particular, the topologies induced are the same.)

In particular, under Shiga’s condition, Tls is, like the other two spaces, contractible.
We then show (Theorem 4.5 in Sect. 4) the following result which shows that if we remove

the hypothesis on Shiga’s condition in Theorem 1.3, the conclusion may not hold:

Theorem 1.5 If S0 is a conformal surface of infinite topological type with a pair of pants
decomposition P = {Ci } such that there is a subsequence of {Cik } contained in the interior
of S0 whose hyperbolic lengths tend to zero, then the identity map between the Teichmüller
space (Tqc(S0), dqc) and its image in (Tls(S0), dqc) is not locally bi-Lipschitz.

(Recall that by Wolpert’s inequality there is always a set-theoretic inclusion Tqc(S0) ⊂
Tls(S0).)

The above results and their proofs, although they are formulated for surfaces of infinite
topological type, apply with little changes to surfaces of finite topological type. In the latter
case, all Teichmüller spaces coincide setwise. Some of the results we obtain here for surfaces
of infinite type are known to be true for surfaces of finite type, but we also obtain some new
results. We consider the case of surfaces of finite topological type in Sect. 5.

We first have the followig:

Corollary 1.6 For any Riemann surface of finite topological type and of negative Euler
characteristic which is not homeomorphic to a pair of pants, the identity map between the
Teichmüller and the length spectrum metrics on T(S) is not a quasi-isometry.

In the case of a surface of finite type with punctures and nonempty boundary, we intro-
duced in the papers [13] and [14] a metric on Teichmüller space which we called the arc
metric and which we denoted by δL . The definition is analogous to the length spectrum met-
ric, but it uses lengths of arcs instead of lengths of closed curves. This definition is recalled
below (Eq. (13). (Note that in the notation δL , L is just part of the notation, used to recall the
word “Length”; it is not a parameter.)

For such a surface, we let D be the set of boundary components of S.
We recall that for a surface of finite type and for ε > 0, the ε-thick part of Teichmüller

space, denoted by Tε , is defined as the space

Tε(S) = {X ∈ T(S) | ∀γ ∈ S, lX (γ ) ≥ ε}
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where S denotes the set of homotopy classes of simple closed curves on � that are not
homotopic to a point or to a puncture (but they can be homotopic to a boundary component).

For surfaces of finite type with nonempty boundary, for ε > 0 and ε0 ≥ ε, we introduce
the ε0-relative ε-thick part of Teichmüller space, denoted by Tε,ε0 , as the subset of the ε-thick
part of Teichmüller space defined as

Tε,ε0(S) = {X ∈ T(S) | ∀γ ∈ S, lX (γ ) ≥ ε and ∀δ ∈ D, lX (γ ) ≤ ε0}.
We prove the following (Theorem 5.3 below):

Theorem 1.7 Let S be a topologically finite type surface. For any ε > 0 and any ε0 ≥ ε,
the identity map between any two of the three metrics dls, dqc and δL on Tε,ε0(S) is globally
bi-Lipschitz, with a bi-Lipschitz constant depending only on the topological type of S, on ε

and on ε0.

In the case where the surface S is of finite type and with empty boundary, then we also
have a similar statement for the ε-thick part of Teichmüller space (Theorem 5.4 below).

2 The three Teichmüller spaces

In order to make the paper self-contained and for the convenience of the reader, we recall
the precise definitions of the three Teichmüller spaces that we associate to a surface of infi-
nite topological type, namely, the quasiconformal Teichmüller space, the Fenchel-Nielsen
Teichmüller space and the length-spectrum Teichmüller space. These spaces were considered
in the papers [2,3], and [12].

We start with the quasiconformal Teichmüller space Tqc(S0). In this definition the hyper-
bolic metrics do not play a significant role, and when such a metric appears in the quasi-
conformal Teichmüller space, we only use its underlying Riemann surface structure. More
precisely, the elements of Tqc(S0) are the homotopy classes of conformal structures S on �

such that the identity map between � equipped with S0 and S on the domain and on the target
respectively is homotopic to a quasiconformal map. The space Tqc(S0) is equipped with the
quasiconformal metric, also called the Teichmüller metric, in which for any two homotopy
classes of conformal structures (�, S) and (�, S′), their quasiconformal distance dqc(S, S′)
is defined as

dqc(S, S′) = 1

2
log inf{K ( f )} (3)

where the infimum is taken over the set of quasiconformal dilatations K ( f ) of quasicon-
formal homeomorphisms f : (�, S) → (�, S′) which are homotopic to the identity. Here,
we are using the notation (�, S) to say that S is a marked structure (conformal or hyperbolic)
on the surface S, with the marking being the identity map.

The conformal structure S0 is the basepoint of Tqc(S0).
We now recall the definition of the Fenchel-Nielsen Teichmüller spaces TF N (S0). In this

definition we use the intrinsic hyperbolic metric associated to a conformal structure, and we
refer the reader to the discussion in the introduction regarding the pair of pants decomposition
rendered geodesic with respect to the intrinsic hyperbolic metric. The definition of TF N (S0)

is relative to the choice of a (topological) pair of pants decomposition P = {Ci } of �, and
to the Fenchel-Nielsen coordinates associated to that decomposition. The definition of the
Fenchel-Nielsen parameters is similar to the one that is done in the case of surfaces of finite
type, and we considered them in detail for surfaces of infinite type in [2].
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Let S be a (homotopy class of a conformal) structure on �. To each homotopy class of
closed geodesics Ci ∈ P, we consider its length parameter lS(Ci ) as defined in §1 above,
and its twist parameter θS(Ci ), which is defined only if Ci is not the homotopy class of a
boundary component of �. The twist parameter is a measure of the relative twist amount
along the geodesic in the class Ci between the two generalized pairs of pants that have this
geodesic in common. The twist amount per unit time along the (geodesic in the class) Ci

is chosen so that a complete positive Dehn twist along Ci changes the twist parameter by
addition of 2π .

Thus, for any conformal structure on S, its Fenchel-Nielsen parameters relative to P is
the collection of pairs

((lS(Ci ), θS(Ci )))i=1,2,...

where it is understood that if Ci is homotopic to a boundary component, then there is no twist
parameter associated to it, and instead of a pair (lS(Ci ), θS(Ci )), we have a single parameter
lS(Ci ).

Now given two conformal structures S and S′ on �, their Fenchel-Nielsen distance (with
respect to P) is

dF N (S, S′) = sup
i=1,2,...

max

(∣∣∣∣log
lS(Ci )

lS′(Ci )

∣∣∣∣ , |lS(Ci )θS(Ci ) − lS′(Ci )θS′(Ci )|
)

, (4)

again with the convention that if Ci is the homotopy class of a boundary component of �,
then there is no twist parameter to be considered.

Two conformal structures S and S′ on � are said to be Fenchel-Nielsen bounded (rela-
tively to P) if their Fenchel-Nielsen distance is finite. Fenchel-Nielsen boundedness is an
equivalence relation.

We say that two hyperbolic structures S and S′ on � are equivalent if there exists an
isometry (�, S) → (�, S′) which is homotopic to the identity. Now given our basepoint
S0 of Teichmüller space, the Fenchel-Nielsen Teichmüller space with respect to P and with
basepoint S0, denoted by TF N (S0), is the space of equivalence classes of conformal structures
that are Fenchel-Nielsen bounded from S0 relative to P.

The function dF N defined above is a distance function on TF N (S0) and we call it the
Fenchel-Nielsen distance relative to the pair of pants decomposition P. The map

TF N (S0) 	 H �→ (log(lH (Ci )) − log(lS0(Ci )), lH (Ci )θH (Ci ))i=1,2,... ∈ �∞

is an isometric bijection between TF N (S0) and the sequence space �∞. It follows from known
properties of �∞-norms that the Fenchel-Nielsen distance on TF N (S0) is complete.

Finally, we recall the definition of the length-spectrum Teichmüller space Tls(S0) with
basepoint S0. Again, in this definition we use the intrinsic hyperbolic metric associated to a
conformal structure, see the discussion in the introduction.

We recall that S denotes the set of homotopy classes of simple closed curves on � that are
not homotopic to a point or to a puncture. We first define the length-spectrum constant L( f )

of a homeomorphism f : (�, S) → (�, S′) where S and S′ are two (homotopy classes of)
conformal structures on � as

L( f ) = sup
α∈S

{
lS′( f (α))

lS(α)
,

lS(α)

lS′( f (α))

}
.

This quantity L( f ) depends only on the homotopy class of f , and we say that f is
length-spectrum bounded if L( f ) < ∞.
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We consider that two hyperbolic metrics (�, S) and (�, S′) on � are equivalent if there
exists an isometry (or, equivalently, a length spectrum preserving homeomorphism) from
(�, S) to (�, S′) which is homotopic to the identity. The length spectrum Teichmüller space
Tls(S0) of � with basepoint S0 is the set of homotopy classes of conformal structures S on
� such that the identity map Id : (�, S0) → (�, S) is length-spectrum bounded.

The length-spectrum metric dls on Tls(S0) is defined by taking the distance dls(S, S′)
between two points in that space to be

dls(S, S′) = 1

2
log L(Id). (5)

where Id is the identity map between (�, S) and (�, S′). (We note that the length-spectrum
constant of a length-spectrum bounded homeomorphism depends only on the homotopy class
of such a homeomorphism.)

3 On the Fenchel-Nielsen distance and the length spectrum distance

Let S be a hyperbolic structure on the surface of infinite topological type S and let P = {Ci }
be a geodesic pair of pants decomposition of S.

Lemma 3.1 Let δ < M be two positive constants such that each Ci ∈ P satisfies δ ≤
lS(Ci ) ≤ M. Then, for each Ci ∈ P, we can find a simple closed geodesic βi satisfying the
following properties:

(1) βi intersects Ci in a minimal number of points (this number is one or two);
(2) βi does not intersect C j , for any j �= i ;
(3) there is a constant L depending only on δ and M such that lS(βi ) < L;
(4) the sine of the intersection angle (or of the two angles) of βi with Ci is bounded from

below by a positive constant that depends only on M.

Proof Topologically, the curves βi are represented in Fig. 1. Using the inequalities δ ≤
lS(Ci ) ≤ M , an upper bound L for lS(βi ) is obtained by estimates on hyperbolic right-
angled hexagons and pentagons. Using the upper bound L for lS(βi ) and the upper bound M
for lS(Ci ), we can prove that sin θ has a positive lower bound depending on L and M . We
refer to Lemma 7.5 in [2] for the details of the proof. ��

Now we fix an element Ci ∈ P and we let τ t : S → St be the time-t Fenchel-Nielsen left
twist deformation of S along Ci . (At time t , we twist by an amount equal to t measured on
the curve Ci .)

Let β be a simple closed geodesic on S. For all t in R, we denote by βt the simple closed
geodesic in St homotopic to τ t (β) and we let lt (β) = lSt (βt ) be its hyperbolic length. (Note
that the class of βt is the same as the class of β when we consider the hyperbolic structures
as being on the same fixed base surface, or as marked surfaces with respect to a fixed base
surface). The intersection angle of Ci and βt at a point p ∈ Ci ∩ βt (measured from Ci to
βt ) is denoted by θt (p).

All angles used in this paper take their values in the interval [0, π].
We shall use the following formulae due to Wolpert [19], concerning the first and second

derivatives of the Fenchel-Nielsen flow. We use the formulation in Weiss [18] p. 281).
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Fig. 1 The two cases for the curve βi used in the proof of Lemma 3.1. In each case, we have represented the
simple closed curves Ci and βi

Lemma 3.2 For any simple closed geodesic β, the function t �→ lt (β) is real-analytic, and
we have

dlt (β)

dt
|t=0 =

∑
p∈Ci ∩β

cos θ(p)

and

d2lt (β)

dt2 |t=0 =
∑
p,q

el1 + el2

2(el(β) − 1)
sin θ(p) sin θ(q) +

∑
p

el(β) + 1

2(el(β) − 1)
sin2 θ(p).

In the right hand side of the last equality, the first sum is taken over the set of ordered pairs
of distinct points p, q in Ci ∩ β, and l1 and l2 are the lengths of the two subarcs that they
subdivide on β, and the second sum is taken over all points p in Ci ∩ β.

We shall use special cases of the above formulae, where β intersects Ci either in one or
in two points.

In the case where β and Ci have only one intersection point p, with intersection angle
θ(p), the formulae become

dlt (β)

dt
|t=0 = cos θ(p)

and

d2lt (β)

dt2 |t=0 = el(β) + 1

2(el(β) − 1)
sin2 θ(p).

In the case where β and Ci have exactly two intersection points, denoted by p1 and p2,
the formulae become

dlt (β)

dt
|t=0 = cos θ(p1) + cos θ(p2)

and

d2lt (β)

dt2 |t=0 = el1 + el2

(el(β) − 1)
sin θ(p1) sin θ(p2) + el(β) + 1

2(el(β) − 1)
(sin2 θ(p1) + sin2 θ(p2)).
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We now consider multi-twists, that is, compositions of twist maps along a family of disjoint
simple closed curves.

We let t = (ti ), i = 1, 2, . . . be a sequence of real numbers, and for any real number t we
denote by τ t : S → St the multi-twist obtained by twisting an amount of ti along each curve
Ci .

For t = (ti ), i = 1, 2, . . ., we set |t | = supi=1,2,... |ti |.
Proposition 3.3 Assume there exist two positive constants δ and M such that each Ci ∈ P
satisfies δ ≤ lS(Ci ) ≤ M. If sup

β∈S | log lt (β)
l(β)

| ≤ D, then

|t | < C sup
β∈S

∣∣∣∣log
lt (β)

l(β)

∣∣∣∣ ,
where C is a constant depending on δ, M and D.

Proof It suffices to prove that for all i = 1, 2, . . . , |ti | ≤ C supβ∈S | log lt (β)
l(β)

|, where C is a
constant that depends on δ, M and D and that does not depend on i .

For each i , we let βi be the simple closed geodesic given by Lemma 3.1. We shall apply
the hypothesis | log lt (β)

l(β)
| ≤ D to β = βi and show that

∀i = 1, 2, . . . , |ti | ≤ C

∣∣∣∣log
lt (βi )

l(βi )

∣∣∣∣ . (6)

Note that the length lt (βi ) is affected by the twist along Ci , and not by any twist along β j

for j �= i .
From (6), we will then get

|t | = sup{|ti |} ≤ C sup
βi

∣∣∣∣log
lt (βi )

l(βi )

∣∣∣∣ ≤ sup
β∈S

∣∣∣∣log
lt (β)

l(β)

∣∣∣∣ ,
which is what we need to prove.

Thus, we now prove (6). We only need to assume that

sup
βi

∣∣∣∣log
lt (βi )

l(βi )

∣∣∣∣ ≤ D,

which is weaker than our assumption that

sup
β∈S

∣∣∣∣log
lt (β)

l(β)

∣∣∣∣ ≤ D.

Without loss of generality, we can assume that ti > 0. In the following estimates, we can
restrict our attention to the pair of pants (or two pairs of pants) that contains Ci , since we
only need to consider the ratio lt (β)

l(β)
. We denote ti = t for simplicity.

There are two cases:

Case 1 : Ci intersects βi at a single point p ∈ S. Let θ be the angle at that intersection point.
By Lemma 3.1, there are positive constants ρ0 = ρ0(M) and L = L(δ, M) such that

sin θ ≥ ρ0, l(βi ) < L . Since the function t �→ lt (β) is real-analytic, we can write down the
second-order Taylor expansion at each t

lt ′(β) = lt (β) + dlt (β)

dt
(t ′ − t) + d2lt (β)

dt2

(t ′ − t)2

2
+ o(|t ′ − t |2).
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From Lemma 3.2, we obtain

lt ′(βi ) = lt (βi ) + cos θt · (t ′ − t) + elt (βi ) + 1

4(elt (βi ) − 1)
sin2 θt · (t − t ′)2 + o(t2), (7)

where θt , is, as above, the intersection angle of Ci and β in the hyperbolic metric St .
We now use the following result of Kerckhoff [9]:

Lemma 3.4 The function t �→ lt (βi ) is strictly convex and the function t �→ cos θt is strictly
increasing.

In particular, if lt (βi ) attains its minimum at t0, then cos θt0 = 0 (or, equivalently, θt0 = π
2 ).

When t < t0, cos θt < 0 and when t > t0, cos θt > 0.
We set | log lt (βi )

l(βi )
| = η ≤ D. Then e−η ≤ lt (βi )

l(βi )
≤ eη. Since 1 − eη ≤ e−η − 1 ≤

lt (βi )
l(βi )

− 1 ≤ eη − 1, we have

|lt (βi ) − l(βi )| = l(βi )| lt (βi )

l(βi )
− 1|

≤ l(βi )|eη − 1|

= l(βi )

⎛
⎝η +

∑
n≥2

ηn

n!

⎞
⎠ .

By assumption, l(βi ) < L and η ≤ D. As a result,

|lt (βi ) − l(βi )| ≤ L

⎛
⎝1 +

∑
n≥2

Dn−1

n!

⎞
⎠ η = e(D)Lη, (8)

where e(D) is a constant that depends only on D.
Let λ > 0 be a fixed sufficiently small constant, to be determined later.
First assume that cos θ ≥ λ. Applying the mean value theorem to the function f (t) =

lt (βi ) on the interval [0, t] and using the fact that f ′(t) = cos θt , we have

lt (βi ) − l(βi ) = cos θξ t, (9)

for some ξ ∈ [0, t].
Since cos θξ ≥ cos θ ≥ λ (Lemma 3.4), combining (9) with (8), we have

t = lt (βi ) − l(βi )

cos θξ

≤ e(D)Lη

λ
.

If | cos θ | < λ, we let β ′
i be the unique geodesic on S homotopic to the image of βi under

the action of a positive Dehn twist along Ci . Note that the hyperbolic length of β ′
i is bounded

by L + M and, in fact, β ′
i = lT (βi ), where T = lS(Ci ) ≥ δ. The value T is the time needed

for a full Dehn twist along βi .
It is clear that β ′

i also satisfies the properties (1)–(3) in Lemma 3.1. Property (4) follows
then from these three (see the proof of Lemma 7.5 in [2]). Let p′ be the intersection point of
Ci with β ′

i and θ ′ be the corresponding intersection angle. Thus, there is a positive constant
ρ1 = ρ1(L + M) such that sin θ ′ ≥ ρ1. Let ρ = min{ρ0, ρ1}.

We want to give a positive lower bound for cos θ ′.
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Since the hyperbolic length of lt (βi ), 0 ≤ t ≤ T is bounded above by L + M and since
ex +1
ex −1 is a strictly decreasing function of x , we have

elt (βi ) + 1

elt (βi ) − 1
>

eL+M + 1

eL+M − 1
, for 0 ≤ t ≤ T . (10)

Let us set K = eL+M +1
4(eL+M −1)

.
From Wolpert’s formula (Lemma 3.2), the second derivative with respect to t of the length

function lt (βi ) is equal to

elt (βi ) + 1

2(elt (βi ) − 1)
sin2 θt . (11)

Inequality (10) shows that

∀t ∈ [0, T ], elt (βi ) + 1

2(elt (βi ) − 1)
sin2 θt > K sin2 θt . (12)

Thus, for 0 ≤ t ≤ T , the second derivative of lt (βi ) with respect to t is bounded below
by K sin2 θt .

For 0 ≤ t ≤ T , we have sin θt ≥ min{sin θ, sin θT = sin θ ′} ≥ ρ, since sin θ ≥ ρ0 and
sin θ ′ ≥ ρ1.

Thus, we have, using (12),

d cos θt

dt
= d2lt (βi )

dt2 ≥ Kρ2.

As a result, and applying again the mean value theorem,

cos θ ′ − cos θ ≥ Kρ2T ≥ Kρ2δ.

Now we set λ = Kρ2δ
2 . Since | cos θ | < λ and cos θ ′ − cos θ ≥ 2λ, we have cos θ ′ > λ. The

same arguments used in the first subcase show that

t ≤ e(D)(L + M)η

λ
.

The remaining subcase is when cos θ ≤ −λ.

Since sin θ ≥ ρ0, we have −
√

1 − ρ2
0 ≤ cos θ < −λ. By Lemma 3.4, if lt (βi ) attains its

minimum at t0, then t0 > 0. This uses the fact that cos θ < 0. Set N = [t0] + 1. Since lt (βi )

decreases and sin θt increases when t ∈ [0, t0], we have

elt (βi ) + 1

elt (βi ) − 1
sin θ2

t ≥ el(βi ) + 1

el(βi ) − 1
sin θ2 ≥ eL + 1

eL − 1
ρ2

0 , for t ∈ [0, t0].

As a result, the first order derivative of cos θt satisfies

d cos θt

dt
≥ eL + 1

4(eL − 1)
ρ2

0 , for t ∈ [0, t0].

Note that t0 is exactly the value when cos θt equals 0, and so it follows that

√
1 − ρ2

0 ≥ cos θt0 − cos θ ≥ eL + 1

4(eL − 1)
ρ2

0 t0.
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This shows that N is bounded above by

4(eL − 1)

(eL + 1)

√
1 − ρ2

0

ρ2
0

+ 1.

Let βN
i be the geodesic on S homotopic to the image of βi under an N -order Dehn twist

along Ci . The intersection angle θN of Ci and βN
i satisfies cos θN > 0 and the length of βN

i
is bounded above by L + N M . By repeating the same argument as above, we complete the
proof of Case (I).

Case 2 : βi intersects Ci at two different points p1, p2 (and we denote the intersecting angle
by θ1 and θ2 respectively).

In this case, we consider the formula

lt (βi ) = l(βi ) + (cos θ1 + cos θ2) · t

+
(

el1 + el2

(el(βi ) − 1)
sin θ1 sin θ2 + el(βi ) + 1

2(el(βi ) − 1)
(sin2 θ1 + sin2 θ2)

)
· t2

2
+ o(t2).

By Lemma 3.1, there are positive constants ρ0 = ρ0(M) and L = L(δ, M) such that
sin θ1, sin θ2 ≥ ρ0, and l(βi ) < L (and then 1

el(βi )−1
> 1

eL−1
). As a result, one checks that

el1 +el2

(el(βi )−1)
sin θ1 sin θ2 + el(βi )+1

2(el(βi )−1)
(sin2 θ1 + sin2 θ2) ≥ A, for some constant A depending on

ρ0 and L .

Now fix a sufficiently small constant 0 < λ0 < A
2 δ. If cos θ1 + cos θ2 ≥ λ0, using again

the mean value theorem for the function t �→ lt (βi ), it is easy to show that

|t | <
e(D)Lη

λ0
.

If | cos θ1 + cos θ2| < λ0, then we replace βi by its image β ′
i under the action of positive

Dehn twist along Ci . Let θ ′
1 and θ ′

2 be the intersection angles of Ci and β ′
i , then the same proof

as Case 1 shows that | cos θ ′
1 + cos θ ′

2| ≥ λ0. As a result, we also have |t | <
e(D)(L+2M)

λ0
η.

If cos θ1 + cos θ2 ≤ −λ0, then we have to replace βi by the image of βi under the action of
an N−order Dehn twist along Ci , denoted by βN

i , such that l(βN
i ) < L + N M and the two

intersection angles of Ci and βN
i are non-negative. To give a upper bound of N , we use the

same argument as the last step of Case 1 , observing that the two intersection angles have the
same behavior under a Fenchel-Nielsen twist deformation. ��

Now we can prove the following

Theorem 3.5 Let S0 be a conformal structure satisfying Shiga’s condition (2), let § (S0)

be the corresponding length-spectrum Teichmüller space and let S be a point in Tls(S0). If
dls(S, S1) ≤ D and dls(S, S2) ≤ D for some positive real number D, then dF N (S1, S2) <

Cdls(S1, S2), where C is a positive constant that depends only on δ, M, D.

Proof There are positive constants δ1 and M1, depending on δ, M and D, such that for each
Ci ∈ P, its hyperbolic length in S1 satisfies

δ1 ≤ lS1(Ci ) ≤ M1.
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By assumption, dls(S1, S2) ≤ 2D. Then by Proposition 3.3,

dF N (S1, S2) ≤ dF N (S1, S) + dF N (S, S2)

< (C + 1)dls(S1, S2)

where C is a positive constant depending on δ1, M1 and D. ��

4 The Teichmüller distance and the length spectrum distance

In this section, we show that the result in Theorem 1.4 is false if we remove Shiga’s condition.
Let S0 be a conformal structure on the surface (of infinite type) � and Tqc(S0) be its

quasiconformal Teichmüller space, let S be an element of Tqc(S0) and let α be a simple
closed geodesic on S. As before, we denote by St be the hyperbolic surface obtained by the
time-t Fenchel-Nielsen twist deformation of S along α. Recall the following proposition,
which is a direct corollary of Lemma 7.4 in [2].

Proposition 4.1 Let T be a positive constant. For |t | < T , we have

dqc(S, St ) ≥ C |t |,
where C is a positive constant depending only on T .

To compare the Teichmüller distance dqc(S, St ) and the length spectrum distance
dls(S, St ), we show the following inequality.

Lemma 4.2 For |t | ≤ |2 log ls(α)|, we have:

dls(S, St ) ≤ 1

2
log sup

γ |i(α,γ )�=0

i(α, γ )|t |
lS(γ )

.

Proof Without loss of generality, we can assume that t > 0. For any simple closed curve β

satisfying i(β, α) �= 0, let lSt (β) denote the hyperbolic length of β in St . From the definition
of the Fenchel-Nielsen twist, we easily have

lS(β) − i(α, β)t ≤ lSt (β) ≤ lS(β) + i(α, β)t.

Note that by the collar lemma, left-hand side is positive for |t | ≤ |2 log lS(α)|.
The length spectrum distance can be written as

dls(S, St ) = max

{
1

2
log sup

γ

lSt (γ )

lS(γ )
,

1

2
log sup

γ

lS(γ )

lSt (γ )

}
,

where the supremum is taken over all essential simple closed curves γ .
The hyperbolic length of a (homotopy class of) simple closed curve γ satisfying i(α, γ ) =

0 is invariant under the twist along α. As a result, we have

dls(S, St ) = max

{
1

2
log sup

γ |i(α,γ )�=0

lSt (γ )

lS(γ )
,

1

2
log sup

γ |i(α,γ )�=0

lS(γ )

lSt (γ )

}
.

For any simple closed curve γ with i(α, γ ) �= 0,

log
lSt (γ )

lS(γ )
≤

∣∣∣∣log
lS(γ ) + i(α, γ )t

lS(γ )

∣∣∣∣ ≤ i(α, γ )t

lS(γ )
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and

log
lS(γ )

lSt (γ )
≤ | log

lS(γ )

lS(γ ) − i(α, γ )t
| ≤ i(α, γ )t

lS(γ )
.

Then we have

dls(S, St ) ≤ 1

2
sup

γ |i(α,γ )�=0

i(α, γ )t

lS(γ )
.

��
Note that if lS(α) ≤ L , then it follows from the collar lemma that there is a constant

C depending on L such that for any simple closed geodesic γ with i(α, γ ) �= 0, lS(γ ) ≥
Ci(γ, α)| log lS(α)|. Then Lemma 4.2 gives:

Lemma 4.3 Let L be a positive constant and let T be a positive constant ≤ |2 log L|. If
lS(α) ≤ L, then there is a constant C depending on L such that

dls(S, St ) ≤ |t |
2C | log lS(α)| .

Combining Proposition 4.1 and Lemma 4.3, we have

Theorem 4.4 Let L be a positive constant and let T be a positive constant ≤ |2 log L|. If
lS(α) ≤ L and 0 < |t | < T , then there exists a constant C depending on L and T , such that

dqc(S, St )

dls(S, St )
≥ C | log lS(α)|.

As an application, we show

Theorem 4.5 If S0 is a conformal surface of infinite topological type with a pair of pants
decomposition P = {Ci } such that there is a subsequence of {Cik } contained in the interior
of S0 whose hyperbolic lengths tend to zero, then the identity map between the Teichmüller
space (Tqc(S0), dqc) and its image in (Tls(S0), dqc) is not locally bi-Lipschitz.

Proof By assumption, there is a subsequence {Cik } of elements of P with hyperbolic length
lS0(Cik ) = εk → 0. For any fixed t , let Sk,t be the hyperbolic surface obtained by the time-t
Fenchel-Nielsen twist deformation of S0 along Cik . By Theorem 4.4, there is a constant C ,
depending on the maximum of εk and |t |, such that

dqc(S0, Sk,t )

dls(S0, Sk,t )
≥ C |log εk | .

Since log εk → ∞ as ε0 → 0, we have

lim
k→∞

dqc(S0, Sk,t )

dls(S0, Sk,t )
= ∞.

To see that the identity map between dqc and dls is not locally bi-Lipschitz, we reason
by contradiction. Assume there are constants C1, C2, such that for any S ∈ Tqc(S0), if
dls(S0, S) ≤ C1, then dqc(S0, S) ≤ C2dls(S0, S).

Consider Sk,t as above, and note that the Teichmüller distance is controlled by t . In fact,
if |t | < T and lS0(Cik ) ≤ L , we have

dqc(S, Sk,t ) ≤ C |t |,
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where C is a constant depending on T and L . See [2, Lemma 8.3] for the proof. As a result,
for any k, we can choose |t | sufficiently small such that dls(S0, Sk,t ) ≤ C1. However, we
have shown that as k → ∞,

dqc(S0, Sk,t )

dls(S0, Sk,t )
→ ∞,

which contradicts the assumption that dqc(S0, S) ≤ C2dls(S0, S). ��
The following is an analogous result, with a sequence {Sk} in Tqc(S0), such that

dqc(S0, Sk) → ∞, while dls(S0, Sk) → 0.

Example 4.6 Let S0 be a conformal structure of infinite type with pants-decomposition P =
{Ci }, such that there is a subsequence of {Ci }, contained in the interior of S0, with hyperbolic
length lS0(Cik ) = εk tending to zero. Let Sk be the hyperbolic surface obtained by time-tk
Fenchel-Nielsen twist deformation of S0 along Cik . Here {tk} is sequence of positive constants
tending to infinity and satisfying tk| log εk | → 0. Then it follows from the proof of Lemma 4.2

that dls(S0, Sk) ≤ tk
2C | log εk | → 0. On the other hand, the fact that dqc(S0, Sk) → ∞ follows

from Lemma 7.2 in [2].

5 The case of surfaces of finite type

In this section, we consider a hyperbolic surface S = Sg,m,n of finite topological type, of
genus g with m punctures and n boundary components and of negative Euler characteristic.
It follows from our assumptions that when we equip such a surface with a conformal or a
hyperbolic structure, then around each puncture, S has a neighborhood which is conformally
equivalent to a punctured disk, and around each boundary component, S has a neighborhood
which is conformally equivalent to an annulus. It is known that in this finite-type case we
have the set-theoretic equalities Tqc(S) = Tls(S) = TF N (S), and we shall simply denote
the Teichmüller space of S by T(S) unless a particular metric has to be specified.

The reader will notice that Proposition 4.1, Lemmas 4.2 and 4.3 and Theorem 4.4 are
valid for any Riemann surface, whether it has finite or infinite topological type.

From Theorem 4.4, we deduce the following, by varying the length of the curve α.

Corollary 5.1 For any Riemann surface of finite type of negative Euler characteristic which
is not homeomorphic to a pair of pants, the identity map between the Teichmüller and the
length spectrum metrics on T(S) is not a quasi-isometry.

Remark 5.2 In the case where the surface is a pair of pants, although Corollary 5.1 cannot
be deduced from Theorem 4.4, it is also true. Let us see this on the Teichmüller space of a
surface of genus 0 with three boundary components; for the pairs of pants with one or two
geodesic boundary components, we can do a similar reasoning. (For pair of pants with no
geodesic boundary components the corollary is false since the Teichmüller space is reduced
to a point.) Let us take an element S in the Teichmüller space represented by a hyperbolic
pair of pants with three boundary components of length equal to 1, and for each n ≥ 2, let
us take an element represented by a surface Sn ∈ T(S) with three boundary components of
length equal to n. Then we have

dls(S, Sn) = log n

2
.
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Note that any geodesic arc connecting perpendicularly two boundary components of Sn has
length approximately 2e−n . By reasoning on the doubles of S and Sn , we see that

dqc(S, Sn) ≥ n

2
.

This shows that dqc and dls are not quasi-isometric.
In the same case (of a surface a homeomorphic to a pair of pants), it follows for instance

from Bishop’s computations in [6] that the identity map between the Teichmüller metric and
the length-spectrum metric is locally bi-Lipschitz. Note also that in this case the length-spec-
trum distance and the Fenchel-Nielsen distances are the same.

The result of Corollary 5.1, for surfaces of finite conformal type (that is, without bound-
ary) was obtained independently and by other methods by Choi and Rafi in [7] and by Liu
et al. in [15]. The result for surfaces of infinite topological type was obtained by Liu and
Papadopoulos in [12]. The result for finite type surfaces with boundary is new.

To state other results for surfaces of finite type, we recall the definition of a metric that we
introduced in [13] on the Teichmüller space of such a surface. The definition of this metric
uses the set of homotopy classes of arcs on S. Let us give the precise definition.

An arc in S is the homeomorphic image of a closed interval whose interior is in the interior
of S and whose endpoints are on the boundary of S. All homotopies of arcs that we consider
are relative to ∂S, that is, they leave the endpoints of arcs on the set ∂S. An arc is said to be
essential if it is not homotopic (relative to ∂S) to a map whose image is in ∂S.

We let B = B(S) be the union of the set of homotopy classes of essential arcs on S
with the set of homotopy classes of simple closed curves which are homotopic to boundary
components.

Given an element γ of B and an element X of the Teichmüller space T(S), the length of γ

with respect to X , denoted by lX (γ ) is defined, in analogy with the length of an element of S,
as the length of the unique geodesic arc homotopic to γ in a hyperbolic metric representing
X .

In [13] and [14] we studied the following metric on T(Sg,m,n). For X and Y in this space,
we set

δL(X, Y ) = log max

(
sup

γ∈S∪B

lY (γ )

lX (γ )
, sup
γ∈S∪B

lX (γ )

lY (γ )

)
. (13)

We showed that this function δL defines a metric, and that this metric is also given by

δL(X, Y ) = log max

(
sup
γ∈B

lY (γ )

lX (γ )
, sup
γ∈B

lX (γ )

lY (γ )

)
. (14)

We call δL the arc metric on the Teichmüller space of the surface with boundary.
Any hyperbolic surface of finite type Sg,m,n obviously satisfies Shiga’s Condition (2), and

Theorem 3.5 applies to such a surface. Let L be an upper bound for the hyperbolic length of
the boundary geodesics of Sg,m,n . A result by Bers [5] says that there exists a pants decom-
position of S with an upper bound L0 for the lengths of the decomposition curves, with L0

depending only on g, m, n and L .
We shall use the following classical terminology.
Given a positive real number ε, the ε-thick part of the Teichmüller space of S, denoted by

Tε(S), is defined as

Tε(S) = {X ∈ T(S) | ∀γ ∈ S, lX (γ ) ≥ ε}.
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We let D be the set of boundary components of S. We shall use the following terminology
that was introduced in [14].

For ε > 0 and ε0 ≥ ε, the ε0-relative ε-thick part of Teichmüller space, denoted by Tε,ε0 ,
is the subset of the ε-thick part of Teichmüller space defined as

Tε,ε0(S) = {X ∈ T(S) | ∀γ ∈ S, lX (γ ) ≥ ε and ∀δ ∈ D, lX (δ) ≤ ε0}.
We prove the following:

Theorem 5.3 Let S be a topologically finite type surface. For any ε > 0 and any ε0 ≥ ε,
the identity map between any two of the three metrics dls, dqc and δL on Tε,ε0(S) is globally
bi-Lipschitz, with a bi-Lipschitz constant depending on the topological type of S, on ε and
on ε0.

Proof We first prove that the identity map

Id : (Tε,ε0 , dls) → (Tε,ε0 , dqc)

is globally bi-Lipschitz. More precisely, we prove that for any X, Y ∈ Tε,L , we have

dls(X, Y ) ≤ dqc(X, Y ) ≤ K dls(X, Y ). (15)

where K depends on the topological type of S, ε and ε0.
The left hand side inequality in (15) follows from Wolpert’s lemma.
From Theorem 1.4 applied to surfaces of topological finite type, for any D > 0, if

X, Y ∈ Tε,L with dls(X, Y ) ≤ D, we have dqc(X, Y ) ≤ Cdls(X, Y ), where C depends on
D, on the topological type of S, on ε and on ε0. Therefore, if dls(X, Y ) ≤ D, the right hand
side inequality of (15) is satisfied. (We could take, for example, D = 1.)

Now assume that dls(X, Y ) ≥ D. From (12) of Theorem 6.3 in [13], dqc(X, Y ) ≤
δL(X, Y ) + D. From Theorem 3.6 in [14], δL(X, Y ) ≤ dL(X, Y ) + K . Thus, we have
dqc(X, Y ) ≤ dls(X, Y ) + D + K . This gives

dqc(X, Y ) ≤ dls(X, Y ) + K1,

where K1 is a constant depending only on the topological type of S, on ε and on ε0.
As dls(X, Y ) ≥ D, we have

K1 = K1

D
D ≤ K1

D
dls(X, Y ),

and

dqc(X, Y ) ≤ (1 + K1

D
)dls(X, Y ).

This proves the right hand side inequality of (15) in all cases.
It remains to show that the identity map

Id : (Tε,ε0 , dls) → (Tε,ε0 , δL )

is globally bi-Lipschitz. We use results proved in [13] and [14] on the natural embeddings
between the Teichmüller space T(S) and the Teichmüller space T(Sd) of the double Sd of
S. From the proof of Theorem 3.3 of [13], this embedding is distance-preserving for the
quasiconformal metrics on the two spaces. From Corollary 2.8 of [14], this embedding is
distance-preserving with respect to the metric δL on T(S) and dls on T(Sd). Furthermore,
Proposition 4.2 of [13] shows that the natural embedding T(S) → T(Sd) sends an ε0-relative
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ε-thick part of T(S) to an ε′-thick part of T(Sd). We already showed that on such an ε′-thick
part of T(Sd), the identity map between the quasiconformal and the length spectrum metrics
is globally bi-Lipschitz. Therefore, the identity map between the quasiconformal metric and
the arc metric δL on the ε0-relative ε-thick part of T(S) is globally bi-Lipschitz. ��

In the case of a surface S of finite type, we define more simply, for ε > 0, the ε-thick part
of T(S), denoted by Tε(S), as

Tε(S) = {X ∈ T(S) | ∀γ ∈ S, lX (γ ) ≥ ε}.

We have the following theorem, analogous to Theorem 5.3. The proof is similar to the proof
of the first part of Theorem 5.3.

Theorem 5.4 Let S be a topologically finite type surface without boundary. For any ε > 0,
the identity map between the two metrics dls, dqc on Tε(S) is globally bi-Lipschitz.

Note that the Fenchel-Nielsen distance is not included in Theorems 5.3 and 5.4.

Acknowledgments The authors wish to thank the referee for a careful reading and a list of corrections.

References

1. Abikoff, W.: The real analytic theory of Teichmüller space, Lecture Notes in Mathematics 820, Springer-
Verlag (1980)

2. Alessandrini, D., Liu, L., Papadopoulos, A., Su, W., Sun, Z.: On Fenchel-Nielsen coordinates on Teich-
müller spaces of surfaces of infinite type. Ann. Acad. Sci. Fenn. (to appear)

3. Alessandrini, D., Liu, L., Papadopoulos, A., Su, W.: On various Teichmüller spaces of a surface of infinite
topological type. Proc. AMS (to appear)

4. Bers, L.: Spaces of degenerating Riemann surfaces. In: Discontinuous Groups and Riemann Surfaces.
Proceedings of the Conference in the University of Maryland, pp. 43–55, College Park, Md. (1973). Ann.
Math. Stud. 79. Princeton University Press, Princeton, N.J. (1974)

5. Bers, L.: An inequality for Riemann surfaces. In: Differential Geometry and Complex Analysis,
pp. 87–93. Springer, Berlin (1985)

6. Bishop, C.J.: Quasiconformal mappings of Y -pieces. Rev. Math. Iberoamericana 18, 627–653 (2002)
7. Choi, Y., Rafi, K.: Comparison between Teichmüller and Lipschitz metrics. J. London Math. Soc. 76,

739–756 (2007)
8. Fletcher, A.: Local rigidity of infinite-dimensional Teichmüller spaces. J. London Math. Soc. 74(2),

26–40 (2006)
9. Kerckhoff, S.: The Nielsen realization problem. Ann. Math. 117, 235–265 (1983)

10. Li, Z.: Teichmüller metric and length spectrum of Riemann surfaces. Sci. Sinica Ser. A 29, 265–274 (1986)
11. Liu, L.: On the length spectrums of non-compact Riemann surfaces. Ann. Acad. Sci. Fenn. Math. 24,

11–22 (1999)
12. Liu, L., Papadopoulos, A.: Some metrics on Teichmüller spaces of surfaces of infinite type, arXiv:

0808.0870v2. Trans. AMS (to appear)
13. Liu, L., Papadopoulos, A., Su, W., Théret, G.: Length spectra and the Teichmüller metric for surfaces

with boundary. Monatsh. Math. 161, 295–311 (2010)
14. Liu, L., Papadopoulos, A., Su, W., Théret, G.: On length spectrum metrics and weak metrics on Teichmüller

spaces of surfaces with boundary. Ann. Acad. Sci. Fenn. 35, 255–274 (2010)
15. Liu, L., Sun, Z., Wei, H.: Topological equivalence of metrics in Teichmüller space. Ann. Acad. Sci. Fenn.

Math. 33(1), 159–170 (2008)
16. Nag, S.: The complex analytic theory of Teichmüller spaces. Mathematical Society Series of Monographs

and Advanced Texts, John Wiley, Canadian (1988)
17. Shiga, H.: On a distance defined by length spectrum on Teichmüller space. Ann. Acad. Sci. Fenn.

Math. 28, 315–326 (2003)

123



110 Geom Dedicata (2012) 157:91–110

18. Weiss, H.: Non-smooth geodesic flows and the earthquake flow on Teichmüller space. Ergod. Th. Dyn.
Syst. 9, 517–568 (1989)

19. Wolpert, S.: On the symplectic geometry of deformations of a hyperbolic surface. Ann. Math. 117,
207–234 (1983)

123


	On local comparison between various metrics on Teichmüller spaces
	Abstract
	1 Introduction
	2 The three Teichmüller spaces
	3 On the Fenchel-Nielsen distance and the length spectrum distance
	4 The Teichmüller distance and the length spectrum distance
	5 The case of surfaces of finite type
	Acknowledgments
	References


